\(\int \frac {\sqrt {\cos (c+d x)}}{a+b \sec (c+d x)} \, dx\) [819]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 75 \[ \int \frac {\sqrt {\cos (c+d x)}}{a+b \sec (c+d x)} \, dx=\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {2 b \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a^2 d}+\frac {2 b^2 \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a^2 (a+b) d} \]

[Out]

2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a/d-2*b*(cos(1/2*d*x+1
/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d+2*b^2*(cos(1/2*d*x+1/2*c)^2)^(1/
2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*a/(a+b),2^(1/2))/a^2/(a+b)/d

Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 75, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {4349, 3937, 3934, 2884, 3872, 3856, 2719, 2720} \[ \int \frac {\sqrt {\cos (c+d x)}}{a+b \sec (c+d x)} \, dx=\frac {2 b^2 \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a^2 d (a+b)}-\frac {2 b \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a^2 d}+\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d} \]

[In]

Int[Sqrt[Cos[c + d*x]]/(a + b*Sec[c + d*x]),x]

[Out]

(2*EllipticE[(c + d*x)/2, 2])/(a*d) - (2*b*EllipticF[(c + d*x)/2, 2])/(a^2*d) + (2*b^2*EllipticPi[(2*a)/(a + b
), (c + d*x)/2, 2])/(a^2*(a + b)*d)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3934

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d*Sqrt[d*S
in[e + f*x]]*Sqrt[d*Csc[e + f*x]], Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d
, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3937

Int[1/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))), x_Symbol] :> Dist[b^2/(a^2
*d^2), Int[(d*Csc[e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] + Dist[1/a^2, Int[(a - b*Csc[e + f*x])/Sqrt[d*C
sc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4349

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))} \, dx \\ & = \frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {a-b \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{a^2}+\frac {\left (b^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{a+b \sec (c+d x)} \, dx}{a^2} \\ & = \frac {b^2 \int \frac {1}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{a^2}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{a}-\frac {\left (b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \, dx}{a^2} \\ & = \frac {2 b^2 \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a^2 (a+b) d}+\frac {\int \sqrt {\cos (c+d x)} \, dx}{a}-\frac {b \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{a^2} \\ & = \frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {2 b \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a^2 d}+\frac {2 b^2 \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a^2 (a+b) d} \\ \end{align*}

Mathematica [A] (verified)

Time = 10.68 (sec) , antiderivative size = 81, normalized size of antiderivative = 1.08 \[ \int \frac {\sqrt {\cos (c+d x)}}{a+b \sec (c+d x)} \, dx=-\frac {2 \left (a E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )-(a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+b \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{a^2 d \sqrt {\sin ^2(c+d x)}} \]

[In]

Integrate[Sqrt[Cos[c + d*x]]/(a + b*Sec[c + d*x]),x]

[Out]

(-2*(a*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] - (a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + b*Ellip
ticPi[-(a/b), ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a^2*d*Sqrt[Sin[c + d*x]^2])

Maple [A] (verified)

Time = 6.11 (sec) , antiderivative size = 226, normalized size of antiderivative = 3.01

method result size
default \(\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \left (\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b -\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{2}+\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2}-\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b +b^{2} \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 a}{a -b}, \sqrt {2}\right )\right )}{a^{2} \left (a -b \right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(226\)

[In]

int(cos(d*x+c)^(1/2)/(a+b*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^
2+1)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a*b-EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b^2+EllipticE(cos(
1/2*d*x+1/2*c),2^(1/2))*a^2-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b+b^2*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a
-b),2^(1/2)))/a^2/(a-b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x
+1/2*c)^2-1)^(1/2)/d

Fricas [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{a+b \sec (c+d x)} \, dx=\int { \frac {\sqrt {\cos \left (d x + c\right )}}{b \sec \left (d x + c\right ) + a} \,d x } \]

[In]

integrate(cos(d*x+c)^(1/2)/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

integral(sqrt(cos(d*x + c))/(b*sec(d*x + c) + a), x)

Sympy [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{a+b \sec (c+d x)} \, dx=\int \frac {\sqrt {\cos {\left (c + d x \right )}}}{a + b \sec {\left (c + d x \right )}}\, dx \]

[In]

integrate(cos(d*x+c)**(1/2)/(a+b*sec(d*x+c)),x)

[Out]

Integral(sqrt(cos(c + d*x))/(a + b*sec(c + d*x)), x)

Maxima [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{a+b \sec (c+d x)} \, dx=\int { \frac {\sqrt {\cos \left (d x + c\right )}}{b \sec \left (d x + c\right ) + a} \,d x } \]

[In]

integrate(cos(d*x+c)^(1/2)/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate(sqrt(cos(d*x + c))/(b*sec(d*x + c) + a), x)

Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{a+b \sec (c+d x)} \, dx=\int { \frac {\sqrt {\cos \left (d x + c\right )}}{b \sec \left (d x + c\right ) + a} \,d x } \]

[In]

integrate(cos(d*x+c)^(1/2)/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate(sqrt(cos(d*x + c))/(b*sec(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)}}{a+b \sec (c+d x)} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}}{a+\frac {b}{\cos \left (c+d\,x\right )}} \,d x \]

[In]

int(cos(c + d*x)^(1/2)/(a + b/cos(c + d*x)),x)

[Out]

int(cos(c + d*x)^(1/2)/(a + b/cos(c + d*x)), x)